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Answer ALL the questions.

I. a) i) Let T be a linear operator on a finite dimensional space V and let c be a scalar. Prove that the following statements are equivalent.

1. c is a characteristic value of T.

2. The operator (T-cI) is singular.

3. det (T-cI) =0.

OR

ii) Let T be a linear operator on 
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R

which is represented in the standard ordered basis by the matrix A=. Prove that T has no characteristic values in R. 
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b) i) Let T be a linear operator on a finite dimensional vector space V. Prove that the minimal polynomial for T divides the characteristic polynomial for T.

OR

ii) Let V be a finite dimensional vector space over F and T be a linear operator on V then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
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II. a) i) Let V be a finite dimensional vector space. Let 
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[image: image4.wmf]k

W

W

W

+

+

=

...

1

, then prove that 
[image: image5.wmf]}

0

{

)

...

(

1

1

=

+

+

Ç

-

j

j

W

W

W

for
[image: image6.wmf]k

j

£

£

2

.

OR

ii) Let W be an invariant subspace for T. Then prove that the minimal polynomial for 
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 divides the minimal polynomial for T.
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b) i) State and prove Primary Decomposition theorem.

OR

ii) Let T be a linear operator on a finite dimensional space V. If T is diagonalizable and if 
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are the distinct characteristic values of T, then prove that there exist linear operators 
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4. Each 
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is a projection

5. The range of 
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is the characteristic space for T associated with
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iii) If there exist k distinct scalars 
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and k non-zero linear operators 
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which satisfy conditions 1,2 and 3, then prove that T is diagonalizable , 
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are the distinct characteristic values of T and conditions 4 and 5 are satisfied also.
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III. a) i) Let T be a linear operator on a vector space V and W a proper T-admissible subspace of V. Prove that W and Cyclic subspace Z((;T)  are independent.

OR

ii) If U is a linear operator on a finite dimensional space W, then prove that U has a cyclic vector if and only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal polynomial for U.
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b) i) ) Let ( be any non-zero vector in V and let [image: image20.png]


 be the T-annihilator of [image: image22.png]


. Prove the following statements:


1. The degree of [image: image24.png]


 is equal to the dimension of the cyclic subspace      Z((;T).

      2. If the degree of [image: image26.png]


 is k, then the vectors(, T(, [image: image28.png]


,…[image: image30.png]


 form the   basis for Z((;T).

      3. If U is the linear operator on Z((;T) induced by T, then the minimal polynomial for U is [image: image32.png]


.

OR

ii) Let T be a linear operator on a finite dimensional vector space V and let 
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be a proper T-admissible subspace of V. Then prove that there exist non-zero vectors 
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IV. a) i) Define the matrix of a form on a real or complex vector space with respect to any ordered basis . Let f be the form on
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defined by 
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 Find the matrix of f with respect to a basis {(1,-1), (1, 1)}.

OR

ii) Let T be a linear operator on a complex finite dimensional inner product space V. Then prove that T is self-adjoint if and only if 
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 is real for every 
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 in V.







(5)

b) i) Let f be the form on a finite-dimensional complex inner product space V. Then prove that there is an orthonormal basis for V in which the matrix of f is upper-triangular.

ii) Prove that for every Hermitian form f on a finite-dimensional inner product space V, there is an orthonormal basis of V in which f is represented by a diagonal matrix with real entries.



       (6+9)

OR

iii) Let f be a form on a real or complex vector space V and 
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a basis for the finite dimensional subspace W of V. Let M be the r x r matrix with entries 
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the set of all vectors 
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 in V such that 

f (
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in W. Then prove that W
[image: image49.wmf]'

is a subspace of V,
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V. a) i) Let V be a vector space over the field F. Define a bilinear form f on V and 

prove that the function defined by f (
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is bilinear. 

OR

ii) Define the quadratic form q associated with a symmetric bilinear form f and prove that 
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b) i) Let V be a finite dimensional vector space over the field of complex numbers.Let f be a symmetric bilinear form on V which has rank r. Then prove that there is an ordered basis 
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for V such that the matrix of f in the ordered basis B is diagonal and f (
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OR

ii) If f is a non-zero skew-symmetric bilinear form on a finite dimensional vector space V then prove that there exist a finite sequence of pairs of vectors,
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1) f (
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2) f (
[image: image61.wmf],

ij

aa

)=f (
[image: image62.wmf],

ij

bb

)=f (
[image: image63.wmf],

ij

ab

)=0,i
[image: image64.wmf]¹

j.

3) If 
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